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Article Info ABSTRACT 

Article type: 

Research Article 
Natural products offer immense potential for drug discovery, but their structural complexity 

and diverse bioactivities pose significant challenges. This review highlights the pivotal role of 

computational methods in addressing these challenges. We explore techniques for structural 

characterization, including DFT, molecular dynamics, and computational spectroscopy, which 

provide detailed insights into molecular properties and enable accurate structure elucidation. 

For activity prediction, molecular docking and QSAR modeling are discussed, emphasizing 

their utility in virtual screening and lead optimization. The integration of computational and 

experimental approaches is crucial for efficient drug discovery, with high-throughput virtual 

screening emerging as a powerful strategy. Despite advancements, challenges such as 

predicting complex structures and accurately estimating activity remain. Future directions 

include incorporating multi-omics data, exploring vast chemical spaces, and developing 

atomic-scale computational methods like QTAIM for a deeper understanding of molecular 

properties. By combining computational and experimental expertise, we can unlock the full 

potential of natural products for therapeutic and other applications. 
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1. Introduction 

Natural products, derived from plants, microorganisms, 

and other biological sources, have been the foundation 

of traditional medicine and continue to inspire modern 

drug discovery [1, 2]. The complex structures and 

diverse bioactivities of these compounds present both 

opportunities and challenges for researchers [3]. In 

recent years, computational tools have emerged as 

powerful allies in natural product research, enabling 

scientists to explore these molecules at unprecedented 

levels of detail [4]. 

Natural products encompass a wide range of 

compounds, from simple secondary metabolites to 

complex macromolecules [5]. This structural and 

functional diversity makes them invaluable sources for 

new drug leads, bioactive materials, and industrial 

applications [6]. However, this same diversity poses 

significant challenges in terms of characterization, 

activity prediction, and optimization [7]. 

Computational methods, with their ability to model 

and predict molecular properties, play a vital role in 

overcoming these challenges [8]. These methods not 

only aid in better understanding the structure and 

function of natural products but also accelerate the 

process of discovering and developing new compounds 

[9]. 

In this mini review, we provide a comprehensive 

examination of advanced computational methods in 

natural product research. We first explore the methods 

used for structural characterization, then delve into 

techniques for activity prediction. We also discuss how 

these methods interface with experimental techniques 

and examine current challenges and future prospects. 

2. Computational Methods for Structural 
Characterization 

2.1. Density Functional Theory (DFT) 

Density Functional Theory has become the method of 

choice for investigating the electronic structure of 

natural products (Fig. 1) [10]. It offers a balance 

between accuracy and computational cost, making it 

suitable for molecules of varying sizes. Figure 1 

provides an overview of various computational 

chemistry methods used to determine molecular 

electronic structures. It covers methods from past, 

present, and future predictions, illustrating the system 

sizes computable within a day using a single-core CPU. 

Methods include force-field (FF), semi-empirical 

(SMO), Hartree-Fock (HF), configuration interaction 

(CI), and modern approximations like DMRG and 

stochastic Monte-Carlo. The predicted capabilities for 

2043 are based on conservative estimates of computing 

power growth. These estimates depend significantly on 

molecular structure and computational resources.  

 
Figure 1: Molecular Structures and Electronic Features 

Advantages 

• Provides detailed information on molecular 

geometry and electronic properties 

• Can predict spectroscopic data (NMR, IR, UV-

Vis) with high accuracy 

• Enables the study of transition states and reaction 

mechanisms 

Limitations 

• Computationally intensive for large molecules 

• Choice of functional can significantly affect results 

• May require additional corrections to describe 

weak interactions like van der Waals forces 

Case Study 

A recent study used DFT to elucidate the structure-

activity relationship of curcumin derivatives, leading to 

the design of more potent anti-inflammatory 

compounds [11]. Researchers were able to predict the 

effect of small structural changes on electronic 

distribution and, consequently, biological activity. 

2.2. Molecular Dynamics (MD) Simulations 

MD simulations offer insights into the dynamic 

behavior of natural products, especially in biological 

environments [12]. 

Advantages 

• Can simulate interactions with solvents and 

biomolecules 

• Provides information on conformational changes 

and flexibility 

• Allows for the study of temperature and pressure 

effects on structure and function 
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Limitations 

• Accuracy depends on the force field used 

• Limited to relatively short time scales 

• Requires significant computational resources for 

large systems 

Case Study 

MD simulations revealed the mechanism by which 

epigallocatechin gallate (EGCG) from green tea 

interacts with lipid membranes, explaining its potential 

health benefits [13]. This study showed how EGCG can 

penetrate and alter the structure of cell membranes, 

which may explain some of its anti-cancer effects. 

2.3. Computational Spectroscopy 

Computational spectroscopy, often based on DFT 

calculations, is a powerful tool for predicting and 

interpreting experimental spectra of natural products 

[14]. 

Advantages 

• Aids in structure determination of unknown 

compounds 

• Predicts NMR, IR, and Raman spectra 

• Facilitates the interpretation of experimental data 

Limitations 

• Accuracy depends on the chosen theoretical level 

and basis set 

• Calculations can be very time-consuming for large 

molecules 

• May require empirical corrections to improve 

accuracy 

Case Study 

In a recent study, computational NMR spectroscopy 

was used to confirm the structure of a novel alkaloid 

isolated from a plant species [15]. Comparison of 

computed and experimental spectra allowed 

researchers to determine the correct structure from 

several possible isomers. 

3. Computational Methods for Activity 
Prediction 

3.1. Molecular Docking 

 Docking simulations predict the binding modes and 

affinities of natural products to biological targets [16]. 

Advantages 

• Rapid screening of large compound libraries 

• Can guide structure-based drug design 

• Provides insights into molecular mechanisms of 

biological activity 

Limitations 

• Simplified treatment of protein flexibility and 

solvation effects 

• May miss non-conventional binding modes 

• Accuracy of scoring functions can be limited 

Case Study 

Virtual screening of a natural product library using 

molecular docking led to the discovery of novel 

inhibitors of the SARS-CoV-2 main protease [17]. This 

study demonstrated how computational methods can 

accelerate the drug discovery process in emergency 

situations like the COVID-19 pandemic. 

3.2. Quantitative Structure-Activity 
Relationship (QSAR) 

QSAR models relate molecular descriptors to 

biological activity, enabling activity prediction for 

novel compounds [18]. 

Advantages 

• Can predict activities for untested compounds 

• Useful for lead optimization 

• Integrates diverse chemical and biological data 

Limitations 

• Requires high-quality experimental data for model 

building 

• May not capture complex, non-linear relationships 

• Limited extrapolation to compounds very different 

from the training set 

Case Study 

A QSAR model developed for antimalarial compounds 

from traditional Chinese medicine helped identify 

promising leads for further development [19]. The 

model incorporated both structural features and 

predicted pharmacokinetic properties to improve its 

predictive power. 

4. Integration of Computational and 
Experimental Approaches 

While computational methods offer numerous 

advantages, their true power emerges when combined 

with experimental techniques [20]. This integration can 

lead to more efficient and effective research strategies 

in natural product discovery and development. 
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4.1. Synergistic Workflows 

• Computational predictions can guide experimental 

design, reducing the number of compounds that 

need to be synthesized and tested [21]. 

• Experimental data can validate and refine 

computational models, improving their accuracy 

and predictive power [22]. 

• Iterative cycles of computation and 

experimentation can accelerate the drug discovery 

process [23]. 

4.2. High-Throughput Virtual Screening 

Combining computational screening with high-

throughput experimental assays allows for rapid 

identification of promising natural product leads [24]. 

5. Challenges and Future Directions 

5.1. Dealing with the complexity of natural 
products 

Many natural products have complex structures with 

multiple stereogenic centers. Developing methods to 

accurately predict the 3D structures and properties of 

these compounds remains a challenge [25]. 

5.2. Improving the accuracy of activity 
predictions 

While current methods can often identify active 

compounds, accurately predicting potency and 

selectivity remains difficult. Machine learning 

approaches, particularly deep learning, show promise 

in this area [26]. 

5.3. Integrating multi-omics data 

As we gather more data on the systems-level effects of 

natural products, developing computational methods to 

integrate and interpret this information will be crucial 

[27]. 

5.4. Exploring the chemical space of natural 
products 

Computational methods can help us explore the vast 

chemical space of potential natural products, guiding 

the discovery of new compounds with desired 

properties [28-31]. 

6. Computational method at atomic-
scale: QTAIM theory 

The intramolecular (at atomic scale) charge and energy 

transfer in molecular systems (such as nanoelectronic 

devices) can be studied using quantum theory of atoms 

in molecule (QTAIM), which is a generalization of 

quantum mechanics to proper open systems, describing 

open systems in terms of the topology of the electron 

density 𝜌(𝑟) [32-35]. The QTAIM can thus be utilized 

to determine chemical behavior and reactivity of the 

quantum systems. The partitioning of the molecular 

space into atomic basins ( ) can be used to partition 

the overall electronic properties into atomic 

contributions systematically. Also, based on the 

QTAIM, the atomic electronic energy, 𝐸𝑒𝑙𝑒𝑐(𝛺) , is 

given by 

)()()( +=
elecelecelec

KVE
 

(1) 

where 𝑉𝑒𝑙𝑒𝑐(𝛺)  and 𝐾𝑒𝑙𝑒𝑐(𝛺)  are the total atomic 

potential and kinetic energies, respectively. In addition, 

the QTAIM remains equally valid in the presence of 

external electric field (EF), and thus QTAIM allows 

also to determine the extent of transferability of the 

field-induced atomic properties and to obtain an 

understanding of the physical factors governing their 

values in given situations [35-36]. 

7. Conclusion 

Computational approaches (at molecular or atomic 

scale) have become indispensable tools in natural 

product research, offering insights that complement 

and extend experimental techniques. As these methods 

continue to evolve, they promise to accelerate the 

discovery and development of novel compounds for 

various applications, from drug discovery to materials 

science. The future of natural product research lies in 

the seamless integration of computational and 

experimental approaches, leveraging the strengths of 

each to unlock the full potential of nature's chemical 

diversity. 
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