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Research Article 
In this study, the electrochemical oxidation of glycerol was investigated using a 

nickel-based metal-organic framework (Ni-MOF)/multiwall carbon nanotube 

(CNT) composite electrode. The surface morphology of the composite electrode 

was characterized by scanning electron microscopy (SEM). Cyclic voltammetry 

was employed to assess the electrocatalytic performance for glycerol oxidation, 

while chronoamperometry was used to evaluate electrode stability via current-

time curves. The electrochemical performance of the Ni-MOF was compared 

before and after compositing with CNTs. The results demonstrate that the Ni-

MOF/CNT composite electrode exhibits enhanced electrocatalytic activity for 

glycerol oxidation, attributed to the synergistic effects of the CNTs’ high 

electrical conductivity and large surface area and the Ni-MOF’s high 

electrocatalytic activity and porous structure. These properties make the 

composite a promising material for glycerol fuel cell applications. 
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1. Introduction 

Direct alkaline fuel cells (DAFCs) have garnered 

significant interest due to their ability to utilize cost-

effective metal catalysts [1]. A critical factor in 

developing high-efficiency DAFCs is the design of 

anodic materials with superior electrocatalytic activity 

[2]. In recent years, nickel and nickel-containing 

compounds have been extensively studied for their 

promising catalytic activity, cost-effectiveness, and 

stability in alkaline media for DAFC applications [3]. 

Nickel in forms such as oxides, hydroxides [4], layered 

double hydroxides [5], sulfides [6], and phosphides [7] 

has been investigated as catalysts for alcohol oxidation. 

Alloying or doping nickel with elements such as Pd [8], 

Ag [9], Co, Fe [10], or Pt [11] has been proposed to 

enhance catalytic performance. 

Recently, nickel-based metal-organic frameworks 

(Ni-MOFs) have emerged as promising catalysts for 

DAFCs due to their large surface area, high porosity, 

and abundant accessible active metal sites, which 

facilitate extensive catalyst-electrolyte contact [12, 13]. 

Notable examples include bimetallic NiCo-MOFs [14], 

Ni-based trinuclear-cluster MOFs [15], ionic liquid-

supported Ni-MOFs [16], and MoS₂@CoNi-zeolitic 

imidazolate MOFs [17], all of which have been 

successfully applied for methanol electrooxidation. In 

this study, a Ni-MOF (Ni-BTC, where BTC = 1,3,5-

benzenetricarboxylate) was synthesized, and its 

electrocatalytic performance for glycerol oxidation was 

evaluated. Glycerol is a promising fuel for DAFCs due 

to its low toxicity, non-flammability, and high 

theoretical energy density. Limited studies have 

explored glycerol electrooxidation using Ni-based 

electrocatalysts [18, 19]. 

Despite their advantages, the low electrical 

conductivity of MOFs often limits their 

electrochemical applications. This challenge can be 

addressed by combining MOFs with conductive 

carbon-based materials, such as carbon nanotubes 

(CNTs) [20] or graphene-based structures [21]. Several 

research groups have developed MOF/carbon-based 

composites for electrochemical applications [22, 23]. 

Here, Ni-BTC was combined with multiwall CNTs (Ni-

BTC/CNTs) to form a composite electrode. The 

electrocatalytic performance of the Ni-BTC/CNT 

composite for glycerol electrooxidation was 

investigated, revealing improved activity compared to 

Ni-BTC alone. 

2. Experimental Section 

2.1. Materials 

All chemicals were of analytical reagent grade, and 

solutions were prepared with distilled water. Multiwall 

carbon nanotube (CNT) powder (50 µm length, 5–15 

nm outer diameter) was obtained from US Research 

Nanomaterials, Inc. Nickel-based metal-organic 

framework (Ni-BTC, formulated as Ni₃(btc)₂·12H₂O) 

was synthesized via a hydrothermal method, as 

described elsewhere [24]. N,N-dimethylformamide 

(DMF) was used for preparing dispersions. 

2.2. Electrode Preparation 

Electrochemical experiments were conducted using a 

PalmSens EmStat potentiostat with a three-electrode 

system, comprising a platinum plate as the counter 

electrode, an Ag/AgCl (3 M KCl) reference electrode, 

and a modified glassy carbon (GC) electrode as the 

working electrode. The GC electrode was modified 

with thin films of Ni-BTC (GC/Ni-BTC) or Ni-

BTC/CNTs (GC/Ni-BTC/CNTs) using a dry-casting 

method [24]. Dispersions of CNTs (1 mg/mL) and Ni-

BTC (1 mg/mL) were prepared in DMF using an 

ultrasonic bath. The Ni-BTC/CNT composite was 

formed by mixing CNTs and Ni-BTC dispersions in a 

1:10 ratio, followed by 10 min of ultrasonication to 

ensure homogeneity. The GC electrode surface was 

mechanically polished and rinsed with distilled water. 

Modified electrodes were prepared by depositing 2 µL 

of Ni-BTC or Ni-BTC/CNT dispersions onto the GC 

surface, followed by drying under an infrared lamp to 

form uniform thin films. 

3. Results and Discussion 

3.1. Surface Morphology of GC/Ni-BTC and 
GC/Ni-BTC/CNT Electrodes 

Scanning electron microscopy (SEM) images of the 

GC/Ni-BTC (Figure 1A) and GC/Ni-BTC/CNT 
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(Figure 1B) electrode surfaces are shown in Figure 1. 

The images reveal a homogeneous distribution of 

CNTs across the Ni-BTC particles in the composite 

electrode. The Ni-BTC particles are uniformly coated 

with CNTs, indicating strong interactions between the 

two materials, which likely contribute to the enhanced 

electrocatalytic performance of the composite. 

 

 
Figure 1. SEM images from the surface of (A) GC/Ni-BTC and (B) 
GC/Ni-BTC/CNTs electrodes 

3.2. Electrochemical properties of GC/Ni-
BTC and GC/Ni-BTC/CNTs electrodes 
toward glycerol oxidation 

Fig. 2 (curve a) shows the cyclic voltammogram 

recorded at the GC/Ni-BTC/CNTs electrode in 0.1 M 

NaOH supporting electrolyte solution. Two reversible 

redox peaks that can be seen from curve a in this figure, 

could be related to the oxidation of Ni2+ to Ni3+ in 

anodic direction and the reduction of Ni3+ to Ni2+ in 

cathodic direction.  

Curve b in figure 2 shows the voltammogram at the 

GC/Ni-BTC/CNTs electrode recorded after addition of 

0.01 M glycerol into the 0.1 M NaOH electrolyte 

solution. A remarkable increase in anodic peak current 

and a decrease in cathodic peak current can be observed 

in the presence of glycerol. This behavior is indicative 

of Ni2+/Ni3+-mediated electrocatalytic oxidation of 

glycerol and can be expressed based on the 

electrochemical/catalytic chemical (EC′) reaction 

mechanism. This can be represented by the following 

reactions: 

Ni(OH)2 + OH- → NiOOH + H2O + e-   E     (1) 

NiOOH + glycerol → Ni(OH)2 + products    C′     (2) 

The voltammograms (curve c and d) recorded at 

the GC/Ni-BTC electrode in the same conditions are 

also presented in Fig. 2. Comparing curve b with curve 

d and curve a with curve c indicate a significant higher 

electrocatalytic efficiency of GC/Ni-BTC/CNTs than 

that of the GC/Ni-BTC electrode. This clearly shows 

that the low electrical conductivity of Ni-BTC can be 

effectively compensated by CNTs. In addition, the 

large surface area as well as high electrochemical 

activity of CNTs can render the Ni-BTC/CNTs 

composite with improved electron transfer kinetics and 

electrocatalytic performances.  
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Figure 2. Cyclic voltammograms of GC/Ni-BTC/CNTs in 0.1 M 
NaOH (a) before and (b) after the addition of glycerol and GC/Ni-
BTC in 0.1 M NaOH (a) before and (b) after the addition of glycerol 
at the scan rate of 100 mV s-1. 

3.3. Evaluation of the glycerol 
concentration 

Cyclic voltammograms were recorded at the GC/Ni-

BTC/CNTs electrode in the presence of various 

concentration of glycerol and the plot of the oxidation 

peak current (Ip) versus the concentration is shown in 

Fig. 3. As can be seen, the oxidation current of glycerol 

is increased with the increasing of its concentration 

upto about 40 mM and at the higher concentrations it 

almost tends to level off. This is probably due to the 

surface saturation effect. These results indicate that the 

Ni-BTC/CNTs can be a promising electrocatalyst with 

high efficiency for the oxidation of glycerol.  

 
Figure 3. The plot of Ipa vs. the glycerol concentration. 

3.4. Evaluation of the stability of the 
glycerol oxidation at the GC/Ni-BTC/CNTs 
electrode 

In order to examine the stability of the electrooxidation 

of glycerol at the GC/Ni-BTC/CNTs electrode, the 

chronoamperometry experiment was conducted. The 

current-time curve of the GC/Ni-BTC/CNTs electrode 

toward 0.01 M glycerol at a constant potential of 0.70 

V (vs. Ag/AgCl) for 500 s is shown in Fig. 4. During 

this experiment the solution was agitated at 200 rpm by 

a magnetic stirrer to retain the homogeneity of the 

solution near the electrode surface. As can be seen from 

this figure, the current decreased slightly after 500 s, 

which indicates high stability of the GC/Ni-BTC/CNTs 

electrode toward the glycerol oxidation. 

 
Figure 5. Chronoamperogram recorded at the GC/Ni-BTC/CNTs 
electrode in 0.1 M NaOH and 0.01 M glycerol solution at potential 
of 0.7 V (vs. Ag/AgCl) for 500 s.  

4. Conclusion 

The electrocatalytic oxidation of glycerol on the 

GC/Ni-BTC/CNT composite electrode was 

investigated using cyclic voltammetry and 

chronoamperometry. The Ni-BTC metal-organic 

framework (MOF), when combined with multiwall 

carbon nanotubes (CNTs), exhibits enhanced 

electrocatalytic activity for glycerol oxidation. This 

improved performance is attributed to the synergistic 

effects of the CNTs’ high electrical conductivity and 

large surface area and the Ni-BTC’s highly porous 

structure and abundant catalytic active sites. 

Chronoamperometry experiments further confirmed 

the excellent stability of the GC/Ni-BTC/CNT 

electrode. These findings demonstrate the potential of 

the Ni-BTC/CNT composite electrode for applications 

in glycerol fuel cells. 
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