Influence of dispersion interactions on the adsorption of NTCDA on Ag(110)

Document Type : Research Article

Authors

1 Department of Chemistry, Faculty of Science, University of Qom, Qom, Iran

2 Institut für Physik, Technische Universität Chemnitz, D-09107 Chemnitz, Germany

3 Leibniz Institut für Polymerforschung, Hohe Straße 6, 01069 Dresden, Germany

10.22091/jaem.2023.9638.1004

Abstract

In the present work, the adsorption of 1,4,5,8-naphthalene tetracarboxylic dianhydride (NTCDA) on a (110)-oriented silver substrate is investigated with second-order Møller-Plesset perturbation theory (MP2). The metal surface was modeled using rigid silver clusters of finite size, allowing to test of the convergence of the optimized adsorbate geometry as a function of the size of the metal cluster. The geometry is converged for most of the substrate models, but the adsorption energy depends more severely on the size of the metal cluster. The dispersion interaction included in MP2 gives a nearly flat adsorbate geometry, whereas its lack of density functional theory (DFT) results in a bent geometry arising from strong silver-oxygen interactions and overlap repulsion in the central part of the molecule. Irrespective of the method used, the carboxylic oxygens interact more strongly with the substrate than the anhydride oxygen atoms, so that their height above the topmost substrate layer is significantly smaller. On the largest silver clusters used, MP2 converges to a height of 2.57 Å for the carbon atoms, somewhat closer than a value of 2.68 Å obtained with MP2 for the similar but larger molecule PTCDA on the same substrate orientation. 

Keywords

Main Subjects


In this work, we have applied MP2 and DFT calculations to study the adsorption of NTCDA on a (110)-oriented silver surface. To model the adsorbate geometry, we have used rigid Ag clusters of different sizes. Silver clusters consisting of at least 22 atoms gave MP2 adsorbate geometries agreeing within height variations of less than 0.09 Å between different substrate models. Rather strong bonds between carboxylic oxygens and the substrate atoms underneath define the preferential adsorption site and induce specific height variations within the functional groups. In the central naphthalene region, our calculation accounting for a partial compensation between overlap repulsion and attractive dispersion interaction predicts an essentially flat adsorption geometry, whereas the lack of dispersion interaction in DFT results in a bent adsorbate geometry where the central part of the molecule is repelled from the substrate. Dispersion-corrected DFT accounting for pairwise interatomic dispersion potentials still gives a significantly bent adsorbate geometry. From the present results and previous studies of PTCDA adsorbates, we consider wave function-based dispersion interactions included at the MP2 level to be the most adequate approach for investigations of aromatic adsorbates on noble metals

Table 3. Binding energy of the core levels in NTCDA:  multilayer,  monolayer chemisorbed on Ag(111), and monolayer chemisorbed on Ag(110). All calculations are performed with B3LYP/def-SV(P). The geometry of the free molecule is optimized with B3LYP/def-SV(P), and NTCDA chemisorbed to Ag(110) corresponds to the MP2 geometry on Ag34(9,16,9),  scanned to the minimum of the BSSE-CP corrected PES. O1 and O2 represent carboxylic and anhydride oxygens. * Scaled calculated values are obtained using a scaling factor of 1.0235.

 

[1] Hung, L. S., & Chen, C. H. (2002). Recent progress of molecular organic electroluminescent materials and devices. Materials Science and Engineering: R: Reports, 39(5-6), 143-222..
[2] Dodabalapur, A. (1997). Organic light emitting diodes. Solid state communications, 102(2-3), 259-267.
[3] Chen, H., Zhang, W., Li, M., He, G., & Guo, X. (2020). Interface engineering in organic field-effect transistors: principles, applications, and perspectives. Chemical reviews, 120(5), 2879-2949.
[4] Yan, Y., Zhao, Y., & Liu, Y. (2022). Recent progress in organic field‐effect transistor‐based integrated circuits. Journal of Polymer Science, 60(3), 311-327.
[5] Liu, Y., Li, B., Ma, C. Q., Huang, F., Feng, G., Chen, H., ... & Bo, Z. (2022). Recent progress in organic solar cells (Part I material science). Science China Chemistry, 1-45.
[6] Mancuso, J. L., Mroz, A. M., Le, K. N., & Hendon, C. H. (2020). Electronic structure modeling of metal–organic frameworks. Chemical reviews, 120(16), 8641-8715..
[7] Wang, T., Zhang, X., Yuan, N., & Sun, C. (2023). Molecular design of a metal–organic framework material rich in fluorine as an interface layer for high-performance solid-state Li metal batteries. Chemical Engineering Journal, 451, 138819..
[8] Okuyama, H., Kuwayama, S., Nakazawa, Y., Hatta, S., & Aruga, T. (2022). Structure and electronic states of strongly interacting metal-organic interfaces: CuPc on Cu (100) and Cu (110). Surface Science, 723, 122126.
[9] Dashtian, K., Shahbazi, S., Tayebi, M., & Masoumi, Z. (2021). A review on metal-organic frameworks photoelectrochemistry: A headlight for future applications. Coordination Chemistry Reviews, 445, 214097.
[10] Gerlach, A., Sellner, S., Schreiber, F., Koch, N., & Zegenhagen, J. (2007). Substrate-dependent bonding distances of PTCDA: A comparative x-ray standing-wave study on Cu (111) and Ag (111). Physical Review B, 75(4), 045401..
[11] Henze, S. K. M., Bauer, O., Lee, T. L., Sokolowski, M., & Tautz, F. S. (2007). Vertical bonding distances of PTCDA on Au (1 1 1) and Ag (1 1 1): Relation to the bonding type. Surface Science, 601(6), 1566-1573..
[12] Kröger, I., Stadtmüller, B., Kleimann, C., Rajput, P., & Kumpf, C. (2011). Normal-incidence x-ray standing-wave study of copper phthalocyanine submonolayers on Cu (111) and Au (111). Physical Review B, 83(19), 195414.
[13] Mercurio, G., Bauer, O., Willenbockel, M., Fairley, N., Reckien, W., Schmitz, C. H., ... & Tautz, F. S. (2013). Adsorption height determination of nonequivalent C and O species of PTCDA on Ag (110) using x-ray standing waves. Physical Review B, 87(4), 045421.
[14] Wießner, M., Hauschild, D., Schöll, A., Reinert, F., Feyer, V., Winkler, K., & Krömker, B. (2012). Electronic and geometric structure of the PTCDA/Ag (110) interface probed by angle-resolved photoemission. Physical Review B, 86(4), 045417.
[15] Wießner, M., Kübert, J., Feyer, V., Puschnig, P., Schöll, A., & Reinert, F. (2013). Lateral band formation and hybridization in molecular monolayers: NTCDA on Ag (110) and Cu (100). Physical Review B, 88(7), 075437.
 
[16] Mercurio, G., Bauer, O., Willenbockel, M., Fiedler, B., Sueyoshi, T., Weiss, C., ... & Tautz, F. S. (2013). Tuning and probing interfacial bonding channels for a functionalized organic molecule by surface modification. Physical Review B, 87(12), 121409.
[17] Stadler, C., Hansen, S., Schöll, A., Lee, T. L., Zegenhagen, J., Kumpf, C., & Umbach, E. (2007). Molecular distortion of NTCDA upon adsorption on Ag (111): a normal incidence x-ray standing wave study. New Journal of Physics, 9(3), 50.
[18] Karl, N., & Günther, C. (1999). Structure and Ordering Principles of Ultrathin Organic Molecular Films on Surfaces of Layered Semiconductors Organic‐on‐Inorganic MBE. Crystal Research and Technology: Journal of Experimental and Industrial Crystallography, 34(2), 243-254.
[19] Schmitz-Hübsch, T., Fritz, T., Sellam, F., Staub, R., & Leo, K. (1997). Epitaxial growth of 3, 4, 9, 10-perylene-tetracarboxylic-dianhydride on Au (111): A STM and RHEED study. Physical Review B, 55(12), 7972.
[20] Glöckler, K., Seidel, C., Soukopp, A., Sokolowski, M., Umbach, E., Böhringer, M., ... & Schneider, W. D. (1998). Highly ordered structures and submolecular scanning tunnelling microscopy contrast of PTCDA and DM-PBDCI monolayers on Ag (111) and Ag (110). Surface science, 405(1), 1-20.
[21] Schöll, A., Zou, Y., Jung, M., Schmidt, T., Fink, R., & Umbach, E. (2004). Line shapes and satellites in high-resolution x-ray photoelectron spectra of large π-conjugated organic molecules. The Journal of chemical physics, 121(20), 10260-10267.
[22] Schöll, A., Zou, Y., Schmidt, T., Fink, R., & Umbach, E. (2004). High-resolution photoemission study of different NTCDA monolayers on Ag (111): Bonding and screening influences on the line shapes. The Journal of Physical Chemistry B, 108(38), 14741-14748.
[23] Hauschild, A., Karki, K., Cowie, B. C. C., Rohlfing, M., Tautz, F. S., & Sokolowski, M. (2005). Molecular distortions and chemical bonding of a large π-conjugated molecule on a metal surface. Physical review letters, 94(3), 036106.
[24] Rurali, R., Lorente, N., & Ordejon, P. (2005). Comment on “molecular distortions and chemical bonding of a large π-conjugated molecule on a metal surface”. Physical review letters, 95(20), 209601.
[25] Hauschild, A., Karki, K., Cowie, B. C. C., Rohlfing, M., Tautz, F. S., & Sokolowski, M. (2005). Hauschild et al. Reply. Physical Review Letters, 95(20), 209602.
[26] Rohlfing, M., & Bredow, T. (2008). Binding energy of adsorbates on a noble-metal surface: exchange and correlation effects. Physical review letters, 101(26), 266106.
[27] Sinnokrot, M. O., Valeev, E. F., & Sherrill, C. D. (2002). Estimates of the ab initio limit for π− π interactions: The benzene dimer. Journal of the American Chemical Society, 124(36), 10887-10893.
https://doi.org/10.1021/ja025896h
[28] Sinnokrot, M. O., & Sherrill, C. D. (2006). High-accuracy quantum mechanical studies of π− π interactions in benzene dimers. The Journal of Physical Chemistry A, 110(37), 10656-10668.
[29] Sinnokrot, M. O., & Sherrill, C. D. (2004). Highly accurate coupled cluster potential energy curves for the benzene dimer: sandwich, T-shaped, and parallel-displaced configurations. The Journal of Physical Chemistry A, 108(46), 10200-10207.
[30] Lee, N. K., Park, S., & Kim, S. K. (2002). Ab initio studies on the van der Waals complexes of polycyclic aromatic hydrocarbons. II. Naphthalene dimer and naphthalene–anthracene complex. The Journal of chemical physics, 116(18), 7910-7917.
[31] Gonzalez, C., & Lim, E. C. (2003). Evaluation of the Hartree− Fock dispersion (HFD) model as a practical tool for probing intermolecular potentials of small aromatic clusters: Comparison of the HFD and MP2 intermolecular potentials. The Journal of Physical Chemistry A, 107(47), 10105-10110.
[32] Tsuzuki, S., Honda, K., Uchimaru, T., & Mikami, M. (2004). High-level ab initio computations of structures and interaction energies of naphthalene dimers: Origin of attraction and its directionality. The Journal of chemical physics, 120(2), 647-659.
[33] Boys, S. F., & Bernardi, F. J. M. P. (1970). The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Molecular Physics, 19(4), 553-566.
[34] Van Duijneveldt, F. B., van Duijneveldt-van de Rijdt, J. G., & van Lenthe, J. H. (1994). State of the art in counterpoise theory. Chemical Reviews, 94(7), 1873-1885.
[35] Riley, K. E., & Hobza, P. (2007). Assessment of the MP2 method, along with several basis sets, for the computation of interaction energies of biologically relevant hydrogen bonded and dispersion bound complexes. The Journal of Physical Chemistry A, 111(33), 8257-8263.
[36] Jurečka, P., Šponer, J., Černý, J., & Hobza, P. (2006). Benchmark database of accurate (MP2 and CCSD (T) complete basis set limit) interaction energies of small model complexes, DNA base pairs, and amino acid pairs. Physical Chemistry Chemical Physics, 8(17), 1985-1993.
[37] Alkauskas, A., Baratoff, A., & Bruder, C. (2006). Site-selective adsorption of naphthalene-tetracarboxylic-dianhydride on Ag (110): First-principles calculations. Physical Review B, 73(16), 165408.
[38] Weigend, F., & Häser, M. (1997). RI-MP2: first derivatives and global consistency. Theoretical Chemistry Accounts, 97, 331-340.
[39] Ahlrichs, R., Bär, M., Häser, M., Horn, H., & Kölmel, C. (1989). Electronic structure calculations on workstation computers: The program system turbomole. Chemical Physics Letters, 162(3), 165-169.
[40] Andrae, D., Haeussermann, U., Dolg, M., Stoll, H., & Preuss, H. (1990). Energy-adjusted ab initio pseudopotentials for the second and third row transition elements. Theoretica chimica acta, 77, 123-141.
[41] Eichkorn, K., Weigend, F., Treutler, O., & Ahlrichs, R. (1997). Auxiliary basis sets for main row atoms and transition metals and their use to approximate Coulomb potentials. Theoretical Chemistry Accounts, 97, 119-124.
[42] Scholz, R., & Abbasi, A. (2010). Influence of dispersion interactions on the adsorption of PTCDA on Ag (110). physica status solidi c, 7(2), 236-239.
[43] Abbasi, A., & Scholz, R. (2009). Ab initio calculation of the dispersion interaction between a polyaromatic molecule and a noble metal substrate: PTCDA on Ag (110). The Journal of Physical Chemistry C, 113(46), 19897-19904.
[44] Bauer, O., Mercurio, G., Willenbockel, M., Reckien, W., Schmitz, C. H., Fiedler, B., ... & Sokolowski, M. (2012). Role of functional groups in surface bonding of planar π-conjugated molecules. Physical Review B, 86(23), 235431.
[45] Pisani, C., Maschio, L., Casassa, S., Halo, M., Schütz, M., & Usvyat, D. (2008). Periodic local MP2 method for the study of electronic correlation in crystals: Theory and preliminary applications. Journal of computational chemistry, 29(13), 2113-2124.
[46] Erba, A., Casassa, S., Maschio, L., & Pisani, C. (2009). DFT and local-MP2 periodic study of the structure and stability of two proton-ordered polymorphs of ice. The Journal of Physical Chemistry B, 113(8), 2347-2354.
[47] Pisani, C., Schütz, M., Casassa, S., Usvyat, D., Maschio, L., Lorenz, M., & Erba, A. (2012). C ryscor: a program for the post-Hartree–Fock treatment of periodic systems. Physical Chemistry Chemical Physics, 14(21), 7615-7628.
[48] Boys, S. F., & Bernardi, F. J. M. P. (1970). The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Molecular Physics, 19(4), 553-566.
[49] Grimme, S., Antony, J., Ehrlich, S., & Krieg, H. (2010). A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. The Journal of chemical physics, 132(15), 154104.
[50] Romaner, L., Heimel, G., Brédas, J. L., Gerlach, A., Schreiber, F., Johnson, R. L., ... & Zojer, E. (2007). Impact of bidirectional charge transfer and molecular distortions on the electronic structure of a metal-organic interface. Physical review letters, 99(25), 256801.
[51] Romaner, L., Nabok, D., Puschnig, P., Zojer, E., & Ambrosch-Draxl, C. (2009). Theoretical study of PTCDA adsorbed on the coinage metal surfaces, Ag (111), Au (111) and Cu (111). New Journal of Physics, 11(5), 053010.
[52] Grimme, S., Antony, J., Schwabe, T., & Mück-Lichtenfeld, C. (2007). Density functional theory with dispersion corrections for supramolecular structures, aggregates, and complexes of (bio) organic molecules. Organic & Biomolecular Chemistry, 5(5), 741-758.