[1] Hung, L. S., & Chen, C. H. (2002). Recent progress of molecular organic electroluminescent materials and devices. Materials Science and Engineering: R: Reports, 39(5-6), 143-222..
[2] Dodabalapur, A. (1997). Organic light emitting diodes. Solid state communications, 102(2-3), 259-267.
[3] Chen, H., Zhang, W., Li, M., He, G., & Guo, X. (2020). Interface engineering in organic field-effect transistors: principles, applications, and perspectives. Chemical reviews, 120(5), 2879-2949.
[4] Yan, Y., Zhao, Y., & Liu, Y. (2022). Recent progress in organic field‐effect transistor‐based integrated circuits. Journal of Polymer Science, 60(3), 311-327.
[5] Liu, Y., Li, B., Ma, C. Q., Huang, F., Feng, G., Chen, H., ... & Bo, Z. (2022). Recent progress in organic solar cells (Part I material science). Science China Chemistry, 1-45.
[6] Mancuso, J. L., Mroz, A. M., Le, K. N., & Hendon, C. H. (2020). Electronic structure modeling of metal–organic frameworks. Chemical reviews, 120(16), 8641-8715..
[7] Wang, T., Zhang, X., Yuan, N., & Sun, C. (2023). Molecular design of a metal–organic framework material rich in fluorine as an interface layer for high-performance solid-state Li metal batteries. Chemical Engineering Journal, 451, 138819..
[8] Okuyama, H., Kuwayama, S., Nakazawa, Y., Hatta, S., & Aruga, T. (2022). Structure and electronic states of strongly interacting metal-organic interfaces: CuPc on Cu (100) and Cu (110). Surface Science, 723, 122126.
[9] Dashtian, K., Shahbazi, S., Tayebi, M., & Masoumi, Z. (2021). A review on metal-organic frameworks photoelectrochemistry: A headlight for future applications. Coordination Chemistry Reviews, 445, 214097.
[10] Gerlach, A., Sellner, S., Schreiber, F., Koch, N., & Zegenhagen, J. (2007). Substrate-dependent bonding distances of PTCDA: A comparative x-ray standing-wave study on Cu (111) and Ag (111). Physical Review B, 75(4), 045401..
[11] Henze, S. K. M., Bauer, O., Lee, T. L., Sokolowski, M., & Tautz, F. S. (2007). Vertical bonding distances of PTCDA on Au (1 1 1) and Ag (1 1 1): Relation to the bonding type. Surface Science, 601(6), 1566-1573..
[12] Kröger, I., Stadtmüller, B., Kleimann, C., Rajput, P., & Kumpf, C. (2011). Normal-incidence x-ray standing-wave study of copper phthalocyanine submonolayers on Cu (111) and Au (111). Physical Review B, 83(19), 195414.
[13] Mercurio, G., Bauer, O., Willenbockel, M., Fairley, N., Reckien, W., Schmitz, C. H., ... & Tautz, F. S. (2013). Adsorption height determination of nonequivalent C and O species of PTCDA on Ag (110) using x-ray standing waves. Physical Review B, 87(4), 045421.
[14] Wießner, M., Hauschild, D., Schöll, A., Reinert, F., Feyer, V., Winkler, K., & Krömker, B. (2012). Electronic and geometric structure of the PTCDA/Ag (110) interface probed by angle-resolved photoemission. Physical Review B, 86(4), 045417.
[15] Wießner, M., Kübert, J., Feyer, V., Puschnig, P., Schöll, A., & Reinert, F. (2013). Lateral band formation and hybridization in molecular monolayers: NTCDA on Ag (110) and Cu (100). Physical Review B, 88(7), 075437.
[16] Mercurio, G., Bauer, O., Willenbockel, M., Fiedler, B., Sueyoshi, T., Weiss, C., ... & Tautz, F. S. (2013). Tuning and probing interfacial bonding channels for a functionalized organic molecule by surface modification. Physical Review B, 87(12), 121409.
[17] Stadler, C., Hansen, S., Schöll, A., Lee, T. L., Zegenhagen, J., Kumpf, C., & Umbach, E. (2007). Molecular distortion of NTCDA upon adsorption on Ag (111): a normal incidence x-ray standing wave study. New Journal of Physics, 9(3), 50.
[18] Karl, N., & Günther, C. (1999). Structure and Ordering Principles of Ultrathin Organic Molecular Films on Surfaces of Layered Semiconductors Organic‐on‐Inorganic MBE. Crystal Research and Technology: Journal of Experimental and Industrial Crystallography, 34(2), 243-254.
[19] Schmitz-Hübsch, T., Fritz, T., Sellam, F., Staub, R., & Leo, K. (1997). Epitaxial growth of 3, 4, 9, 10-perylene-tetracarboxylic-dianhydride on Au (111): A STM and RHEED study. Physical Review B, 55(12), 7972.
[20] Glöckler, K., Seidel, C., Soukopp, A., Sokolowski, M., Umbach, E., Böhringer, M., ... & Schneider, W. D. (1998). Highly ordered structures and submolecular scanning tunnelling microscopy contrast of PTCDA and DM-PBDCI monolayers on Ag (111) and Ag (110). Surface science, 405(1), 1-20.
[21] Schöll, A., Zou, Y., Jung, M., Schmidt, T., Fink, R., & Umbach, E. (2004). Line shapes and satellites in high-resolution x-ray photoelectron spectra of large π-conjugated organic molecules. The Journal of chemical physics, 121(20), 10260-10267.
[22] Schöll, A., Zou, Y., Schmidt, T., Fink, R., & Umbach, E. (2004). High-resolution photoemission study of different NTCDA monolayers on Ag (111): Bonding and screening influences on the line shapes. The Journal of Physical Chemistry B, 108(38), 14741-14748.
[23] Hauschild, A., Karki, K., Cowie, B. C. C., Rohlfing, M., Tautz, F. S., & Sokolowski, M. (2005). Molecular distortions and chemical bonding of a large π-conjugated molecule on a metal surface. Physical review letters, 94(3), 036106.
[24] Rurali, R., Lorente, N., & Ordejon, P. (2005). Comment on “molecular distortions and chemical bonding of a large π-conjugated molecule on a metal surface”. Physical review letters, 95(20), 209601.
[25] Hauschild, A., Karki, K., Cowie, B. C. C., Rohlfing, M., Tautz, F. S., & Sokolowski, M. (2005). Hauschild et al. Reply. Physical Review Letters, 95(20), 209602.
[26] Rohlfing, M., & Bredow, T. (2008). Binding energy of adsorbates on a noble-metal surface: exchange and correlation effects. Physical review letters, 101(26), 266106.
[27] Sinnokrot, M. O., Valeev, E. F., & Sherrill, C. D. (2002). Estimates of the ab initio limit for π− π interactions: The benzene dimer. Journal of the American Chemical Society, 124(36), 10887-10893.
https://doi.org/10.1021/ja025896h
[28] Sinnokrot, M. O., & Sherrill, C. D. (2006). High-accuracy quantum mechanical studies of π− π interactions in benzene dimers. The Journal of Physical Chemistry A, 110(37), 10656-10668.
[29] Sinnokrot, M. O., & Sherrill, C. D. (2004). Highly accurate coupled cluster potential energy curves for the benzene dimer: sandwich, T-shaped, and parallel-displaced configurations. The Journal of Physical Chemistry A, 108(46), 10200-10207.
[30] Lee, N. K., Park, S., & Kim, S. K. (2002). Ab initio studies on the van der Waals complexes of polycyclic aromatic hydrocarbons. II. Naphthalene dimer and naphthalene–anthracene complex. The Journal of chemical physics, 116(18), 7910-7917.
[31] Gonzalez, C., & Lim, E. C. (2003). Evaluation of the Hartree− Fock dispersion (HFD) model as a practical tool for probing intermolecular potentials of small aromatic clusters: Comparison of the HFD and MP2 intermolecular potentials. The Journal of Physical Chemistry A, 107(47), 10105-10110.
[32] Tsuzuki, S., Honda, K., Uchimaru, T., & Mikami, M. (2004). High-level ab initio computations of structures and interaction energies of naphthalene dimers: Origin of attraction and its directionality. The Journal of chemical physics, 120(2), 647-659.
[33] Boys, S. F., & Bernardi, F. J. M. P. (1970). The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Molecular Physics, 19(4), 553-566.
[34] Van Duijneveldt, F. B., van Duijneveldt-van de Rijdt, J. G., & van Lenthe, J. H. (1994). State of the art in counterpoise theory. Chemical Reviews, 94(7), 1873-1885.
[35] Riley, K. E., & Hobza, P. (2007). Assessment of the MP2 method, along with several basis sets, for the computation of interaction energies of biologically relevant hydrogen bonded and dispersion bound complexes. The Journal of Physical Chemistry A, 111(33), 8257-8263.
[36] Jurečka, P., Šponer, J., Černý, J., & Hobza, P. (2006). Benchmark database of accurate (MP2 and CCSD (T) complete basis set limit) interaction energies of small model complexes, DNA base pairs, and amino acid pairs. Physical Chemistry Chemical Physics, 8(17), 1985-1993.
[37] Alkauskas, A., Baratoff, A., & Bruder, C. (2006). Site-selective adsorption of naphthalene-tetracarboxylic-dianhydride on Ag (110): First-principles calculations. Physical Review B, 73(16), 165408.
[38] Weigend, F., & Häser, M. (1997). RI-MP2: first derivatives and global consistency. Theoretical Chemistry Accounts, 97, 331-340.
[39] Ahlrichs, R., Bär, M., Häser, M., Horn, H., & Kölmel, C. (1989). Electronic structure calculations on workstation computers: The program system turbomole. Chemical Physics Letters, 162(3), 165-169.
[40] Andrae, D., Haeussermann, U., Dolg, M., Stoll, H., & Preuss, H. (1990). Energy-adjusted ab initio pseudopotentials for the second and third row transition elements. Theoretica chimica acta, 77, 123-141.
[41] Eichkorn, K., Weigend, F., Treutler, O., & Ahlrichs, R. (1997). Auxiliary basis sets for main row atoms and transition metals and their use to approximate Coulomb potentials. Theoretical Chemistry Accounts, 97, 119-124.
[42] Scholz, R., & Abbasi, A. (2010). Influence of dispersion interactions on the adsorption of PTCDA on Ag (110). physica status solidi c, 7(2), 236-239.
[43] Abbasi, A., & Scholz, R. (2009). Ab initio calculation of the dispersion interaction between a polyaromatic molecule and a noble metal substrate: PTCDA on Ag (110). The Journal of Physical Chemistry C, 113(46), 19897-19904.
[44] Bauer, O., Mercurio, G., Willenbockel, M., Reckien, W., Schmitz, C. H., Fiedler, B., ... & Sokolowski, M. (2012). Role of functional groups in surface bonding of planar π-conjugated molecules. Physical Review B, 86(23), 235431.
[45] Pisani, C., Maschio, L., Casassa, S., Halo, M., Schütz, M., & Usvyat, D. (2008). Periodic local MP2 method for the study of electronic correlation in crystals: Theory and preliminary applications. Journal of computational chemistry, 29(13), 2113-2124.
[46] Erba, A., Casassa, S., Maschio, L., & Pisani, C. (2009). DFT and local-MP2 periodic study of the structure and stability of two proton-ordered polymorphs of ice. The Journal of Physical Chemistry B, 113(8), 2347-2354.
[47] Pisani, C., Schütz, M., Casassa, S., Usvyat, D., Maschio, L., Lorenz, M., & Erba, A. (2012). C ryscor: a program for the post-Hartree–Fock treatment of periodic systems. Physical Chemistry Chemical Physics, 14(21), 7615-7628.
[48] Boys, S. F., & Bernardi, F. J. M. P. (1970). The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Molecular Physics, 19(4), 553-566.
[49] Grimme, S., Antony, J., Ehrlich, S., & Krieg, H. (2010). A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. The Journal of chemical physics, 132(15), 154104.
[50] Romaner, L., Heimel, G., Brédas, J. L., Gerlach, A., Schreiber, F., Johnson, R. L., ... & Zojer, E. (2007). Impact of bidirectional charge transfer and molecular distortions on the electronic structure of a metal-organic interface. Physical review letters, 99(25), 256801.
[51] Romaner, L., Nabok, D., Puschnig, P., Zojer, E., & Ambrosch-Draxl, C. (2009). Theoretical study of PTCDA adsorbed on the coinage metal surfaces, Ag (111), Au (111) and Cu (111). New Journal of Physics, 11(5), 053010.
[52] Grimme, S., Antony, J., Schwabe, T., & Mück-Lichtenfeld, C. (2007). Density functional theory with dispersion corrections for supramolecular structures, aggregates, and complexes of (bio) organic molecules. Organic & Biomolecular Chemistry, 5(5), 741-758.