Synthesis, Characterization and Surface analysis of Copper Complex Featuring π-π Interactions and Hydrogen Bonding

Document Type : Research Article

Authors

1 Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, Tehran, Iran

2 Department of Inorganic Chemistry, Faculty of Sciences, Masaryk University, Kotlárská 2, 611 37 Brno, Czech

10.22091/jaem.2023.9839.1007

Abstract

This study aimed to synthesize and characterize a copper complex using various analytical techniques. The synthesized complex was confirmed through IR spectroscopy and further characterized using X-ray diffraction, which revealed complex crystallized in the monoclinic crystal system with the P21 space group. The complex exhibited hydrogen bonding, with Hirshfeld analysis indicating a 7.1% contribution from the surfaces. The study also found that H···H interactions accounted for 59.6% of the significant amount of interaction in the surfaces. Overall, this investigation provides valuable insights into the structural properties and interactions of copper complexes. These findings provide valuable insights into the structural properties and interactions of copper complexes, which can contribute to the development of new materials with unique properties and potential applications in fields such as catalysis, electronics, and medicine. The ability to synthesize and characterize these complexes can lead to the discovery of novel copper complexes with even more remarkable properties. Further research in this area could build upon the findings of this study and advance our understanding of the structural properties and interactions of copper complexes.

Keywords

Main Subjects


In conclusion, this research effectively produced a copper complex and verified its structures through IR spectroscopy. The complexes were further examined using X-ray diffraction, which disclosed that the [Cu(Hpbdo)(pbdo)(OCH3)] complex crystallized in the monoclinic crystal system with the P21 space group. The complexes exhibited Hydrogen bond, and Hirshfeld analysis indicated that the surfaces hydrogen bond contribution was 7.1%. Moreover, the study discovered that the significant amount of interaction in the surfaces was associated with H···H interactions, which accounted for 59.6% in the complex. In general, this investigation offers valuable insights into the structural properties and interactions of these copper complexes.

(1)     Ruiz-Azuara, L.; E. Bravo-Gomez, M. Copper Compounds in Cancer Chemotherapy. Curr Med Chem 2010, 17 (31), 3606–3615. https://doi.org/10.2174/092986710793213751.
(2)     Denoyer, D.; Clatworthy, S. A. S.; Cater, M. A. 16. Copper Complexes in Cancer Therapy. In Metallo-Drugs: Development and Action of Anticancer Agents; Sigel, A., Sigel, H., Freisinger, E., Sigel, R. K. O., Eds.; De Gruyter: Berlin, Boston, 2018; pp 469–506. https://doi.org/10.1515/9783110470734-022.
(3)     Krasnovskaya, O.; Naumov, A.; Guk, D.; Gorelkin, P.; Erofeev, A.; Beloglazkina, E.; Majouga, A. Copper Coordination Compounds as Biologically Active Agents. Int J Mol Sci 2020, 21 (11), 3965. https://doi.org/10.3390/ijms21113965.
(4)     Beaudelot, J.; Oger, S.; Peruško, S.; Phan, T.-A.; Teunens, T.; Moucheron, C.; Evano, G. Photoactive Copper Complexes: Properties and Applications. Chem Rev 2022, 122 (22), 16365–16609. https://doi.org/10.1021/acs.chemrev.2c00033.
(5)     Aflak, N.; Ben El Ayouchia, H.; Bahsis, L.; Anane, H.; Julve, M.; Stiriba, S.-E. Recent Advances in Copper-Based Solid Heterogeneous Catalysts for Azide–Alkyne Cycloaddition Reactions. Int J Mol Sci 2022, 23 (4), 2383. https://doi.org/10.3390/ijms23042383.
(6)     Chang, F.; Xiao, M.; Miao, R.; Liu, Y.; Ren, M.; Jia, Z.; Han, D.; Yuan, Y.; Bai, Z.; Yang, L. Copper-Based Catalysts for Electrochemical Carbon Dioxide Reduction to Multicarbon Products. Electrochemical Energy Reviews 2022, 5 (3), 4. https://doi.org/10.1007/s41918-022-00139-5.
(7)     Molinaro, C.; Martoriati, A.; Pelinski, L.; Cailliau, K. Copper Complexes as Anticancer Agents Targeting Topoisomerases I and II. Cancers (Basel) 2020, 12 (10), 2863. https://doi.org/10.3390/cancers12102863.
(8)     Li, J.-X.; Du, Z.-X.; Zhang, L.-L.; Liu, D.-L.; Pan, Q.-Y. Doubly Mononuclear Cocrystal and Oxalato-Bridged Binuclear Copper Compounds Containing Flexible 2-((3,5,6-Trichloropyridin-2-Yl)Oxy)Acetate Tectons: Synthesis, Crystal Analysis and Magnetic Properties. Inorganica Chim Acta 2020, 512, 119890. https://doi.org/10.1016/j.ica.2020.119890.
(9)     Alter, M.; Binet, L.; Touati, N.; Lubin-Germain, N.; Le Hô, A.-S.; Mirambet, F.; Gourier, D. Photochemical Origin of the Darkening of Copper Acetate and Resinate Pigments in Historical Paintings. Inorg Chem 2019, 58 (19), 13115–13128. https://doi.org/10.1021/acs.inorgchem.9b02007.
(10)   Ikram, M.; Rehman, S.; Feroz, I.; Farzia; Khan, R.; Sinnokrot, M. O.; Subhan, F.; Naeem, M.; Schulzke, C. Synthesis, Spectral, Hirshfeld Surface Analysis and Biological Evaluation of a Schiff Base Copper(II) Complex: Towards a Copper(II) Based Human Anti-Glioblastoma Agent. J Mol Struct 2023, 1278, 134960. https://doi.org/10.1016/j.molstruc.2023.134960.
(11)   Sarakinou, K. M.; Banti, C. N.; Hatzidimitriou, A. G.; Hadjikakou, S. K. Utilization of Metal Complexes Formed by Copper(II) Acetate or Nitrate, for the Urea Assay. Inorganica Chim Acta 2021, 517, 120203. https://doi.org/10.1016/j.ica.2020.120203.
(12)   Mujahid, M.; Trendafilova, N.; Rosair, G.; Kavanagh, K.; Walsh, M.; Creaven, B. S.; Georgieva, I. Structural and Spectroscopic Study of New Copper(II) and Zinc(II) Complexes of Coumarin Oxyacetate Ligands and Determination of Their Antimicrobial Activity. Molecules 2023, 28 (11), 4560. https://doi.org/10.3390/molecules28114560.
(13)   SEGUEL, G. V; RIVAS, B. L.; PAREDES, C. STUDY OF THE INTERACTIONS BETWEEN COPPER(II) ACETATE MONOHYDRATE AND OROTIC ACID AND OROTATE LIGANDS. Journal of the Chilean Chemical Society 2010, 55 (3), 355–358. https://doi.org/10.4067/S0717-97072010000300018.
(14)   Gominho, J.; Lourenço, A.; Marques, A. V.; Pereira, H. An Extensive Study on the Chemical Diversity of Lipophilic Extractives from Eucalyptus Globulus Wood. Phytochemistry 2020, 180, 112520. https://doi.org/10.1016/j.phytochem.2020.112520.
(15)   Mancia, M. D.; Reid, M. E.; DuBose, E. S.; Campbell, J. A.; Jackson, K. M. Qualitative Identification of Dibenzoylmethane in Licorice Root ( Glycyrrhiza Glabra ) Using Gas Chromatography-Triple Quadrupole Mass Spectrometry. Nat Prod Commun 2014, 9 (1), 1934578X1400900. https://doi.org/10.1177/1934578X1400900127.
(16)   Li, S. Chemical Composition and Product Quality Control of Turmeric (Curcuma Longa L.). Pharm Crop 2011, 5 (1), 28–54. https://doi.org/10.2174/2210290601102010028.
(17)   Amalraj, A.; Pius, A.; Gopi, S.; Gopi, S. Biological Activities of Curcuminoids, Other Biomolecules from Turmeric and Their Derivatives – A Review. J Tradit Complement Med 2017, 7 (2), 205–233. https://doi.org/10.1016/j.jtcme.2016.05.005.
(18)   Slika, L.; Patra, D. Traditional Uses, Therapeutic Effects and Recent Advances of Curcumin: A Mini-Review. Mini-Reviews in Medicinal Chemistry 2020, 20 (12), 1072–1082. https://doi.org/10.2174/1389557520666200414161316
(19)   Kotha, R. R.; Luthria, D. L. Curcumin: Biological, Pharmaceutical, Nutraceutical, and Analytical Aspects. Molecules 2019, 24 (16), 2930. https://doi.org/10.3390/molecules24162930.
(20)   Chiyindiko, E.; Malan, F. P.; Langner, E. H. G.; Conradie, J. Conformational Study of [Cu(CF3COCHCO(C4H3X))2] (X = O or S), a Combined Experimental and DFT Study. J Mol Struct 2019, 1198, 126916. https://doi.org/10.1016/j.molstruc.2019.126916.
(21)   Chiyindiko, E.; Stuurman, N. F.; Langner, E. H. G.; Conradie, J. Electrochemical Behaviour of Bis(β-Diketonato)Copper(II) Complexes Containing γ-Substituted β-Diketones. Journal of Electroanalytical Chemistry 2020, 860, 113929. https://doi.org/10.1016/j.jelechem.2020.113929.
(22)   Xu, D. F.; Shen, Z. H.; Shi, Y.; He, Q.; Xia, Q. C. Synthesis, Characterization, Crystal Structure, and Biological Activity of the Copper Complex. Russian Journal of Coordination Chemistry 2010, 36 (6), 458–462. https://doi.org/10.1134/S1070328410060060.
(23)   Radzyminska-Lenarcik, E.; Witt, K. Solvent Extraction of Copper Ions by 3-Substituted Derivatives of β-Diketones. Sep Sci Technol 2018, 53 (8), 1223–1229. https://doi.org/10.1080/01496395.2017.1329838.
(24)   Valdéz-Camacho, J. R.; Ramírez-Solís, A.; Escalante, J.; Ruiz-Azuara, L.; Hô, M. Theoretical Determination of Half-Wave Potentials for Phenanthroline-, Bipyridine-, Acetylacetonate-, and Glycinate-Containing Copper (II) Complexes. J Mol Model 2020, 26 (7), 191. https://doi.org/10.1007/s00894-020-04453-x.
(25)   Keller, M.; Ianchuk, M.; Ladeira, S.; Taillefer, M.; Caminade, A.-M.; Majoral, J.-P.; Ouali, A. Synthesis of Dendritic β-Diketones and Their Application in Copper-Catalyzed Diaryl Ether Formation. European J Org Chem 2012, 2012 (5), 1056–1062. https://doi.org/10.1002/ejoc.201101521.
(26)   Larson, A. T.; Crossman, A. S.; Krajewski, S. M.; Marshak, M. P. Copper(II) as a Platform for Probing the Steric Demand of Bulky β-Diketonates. Inorg Chem 2020, 59 (1), 423–432. https://doi.org/10.1021/acs.inorgchem.9b02721.
(27)   Spackman, P. R.; Turner, M. J.; McKinnon, J. J.; Wolff, S. K.; Grimwood, D. J.; Jayatilaka, D.; Spackman, M. A. CrystalExplorer : A Program for Hirshfeld Surface Analysis, Visualization and Quantitative Analysis of Molecular Crystals. J Appl Crystallogr 2021, 54 (3), 1006–1011. https://doi.org/10.1107/S1600576721002910.
(28)   McKinnon, J. J.; Jayatilaka, D.; Spackman, M. A. Towards Quantitative Analysis of Intermolecular Interactions with Hirshfeld Surfaces. Chemical Communications 2007, No. 37, 3814. https://doi.org/10.1039/b704980c.