(2) Denoyer, D.; Clatworthy, S. A. S.; Cater, M. A. 16. Copper Complexes in Cancer Therapy. In Metallo-Drugs: Development and Action of Anticancer Agents; Sigel, A., Sigel, H., Freisinger, E., Sigel, R. K. O., Eds.; De Gruyter: Berlin, Boston, 2018; pp 469–506.
https://doi.org/10.1515/9783110470734-022.
(3) Krasnovskaya, O.; Naumov, A.; Guk, D.; Gorelkin, P.; Erofeev, A.; Beloglazkina, E.; Majouga, A. Copper Coordination Compounds as Biologically Active Agents. Int J Mol Sci 2020, 21 (11), 3965.
https://doi.org/10.3390/ijms21113965.
(4) Beaudelot, J.; Oger, S.; Peruško, S.; Phan, T.-A.; Teunens, T.; Moucheron, C.; Evano, G. Photoactive Copper Complexes: Properties and Applications. Chem Rev 2022, 122 (22), 16365–16609.
https://doi.org/10.1021/acs.chemrev.2c00033.
(5) Aflak, N.; Ben El Ayouchia, H.; Bahsis, L.; Anane, H.; Julve, M.; Stiriba, S.-E. Recent Advances in Copper-Based Solid Heterogeneous Catalysts for Azide–Alkyne Cycloaddition Reactions. Int J Mol Sci 2022, 23 (4), 2383.
https://doi.org/10.3390/ijms23042383.
(6) Chang, F.; Xiao, M.; Miao, R.; Liu, Y.; Ren, M.; Jia, Z.; Han, D.; Yuan, Y.; Bai, Z.; Yang, L. Copper-Based Catalysts for Electrochemical Carbon Dioxide Reduction to Multicarbon Products. Electrochemical Energy Reviews 2022, 5 (3), 4.
https://doi.org/10.1007/s41918-022-00139-5.
(7) Molinaro, C.; Martoriati, A.; Pelinski, L.; Cailliau, K. Copper Complexes as Anticancer Agents Targeting Topoisomerases I and II. Cancers (Basel) 2020, 12 (10), 2863.
https://doi.org/10.3390/cancers12102863.
(8) Li, J.-X.; Du, Z.-X.; Zhang, L.-L.; Liu, D.-L.; Pan, Q.-Y. Doubly Mononuclear Cocrystal and Oxalato-Bridged Binuclear Copper Compounds Containing Flexible 2-((3,5,6-Trichloropyridin-2-Yl)Oxy)Acetate Tectons: Synthesis, Crystal Analysis and Magnetic Properties. Inorganica Chim Acta 2020, 512, 119890.
https://doi.org/10.1016/j.ica.2020.119890.
(9) Alter, M.; Binet, L.; Touati, N.; Lubin-Germain, N.; Le Hô, A.-S.; Mirambet, F.; Gourier, D. Photochemical Origin of the Darkening of Copper Acetate and Resinate Pigments in Historical Paintings. Inorg Chem 2019, 58 (19), 13115–13128.
https://doi.org/10.1021/acs.inorgchem.9b02007.
(10) Ikram, M.; Rehman, S.; Feroz, I.; Farzia; Khan, R.; Sinnokrot, M. O.; Subhan, F.; Naeem, M.; Schulzke, C. Synthesis, Spectral, Hirshfeld Surface Analysis and Biological Evaluation of a Schiff Base Copper(II) Complex: Towards a Copper(II) Based Human Anti-Glioblastoma Agent. J Mol Struct 2023, 1278, 134960.
https://doi.org/10.1016/j.molstruc.2023.134960.
(11) Sarakinou, K. M.; Banti, C. N.; Hatzidimitriou, A. G.; Hadjikakou, S. K. Utilization of Metal Complexes Formed by Copper(II) Acetate or Nitrate, for the Urea Assay. Inorganica Chim Acta 2021, 517, 120203.
https://doi.org/10.1016/j.ica.2020.120203.
(12) Mujahid, M.; Trendafilova, N.; Rosair, G.; Kavanagh, K.; Walsh, M.; Creaven, B. S.; Georgieva, I. Structural and Spectroscopic Study of New Copper(II) and Zinc(II) Complexes of Coumarin Oxyacetate Ligands and Determination of Their Antimicrobial Activity. Molecules 2023, 28 (11), 4560.
https://doi.org/10.3390/molecules28114560.
(13) SEGUEL, G. V; RIVAS, B. L.; PAREDES, C. STUDY OF THE INTERACTIONS BETWEEN COPPER(II) ACETATE MONOHYDRATE AND OROTIC ACID AND OROTATE LIGANDS. Journal of the Chilean Chemical Society 2010, 55 (3), 355–358.
https://doi.org/10.4067/S0717-97072010000300018.
(14) Gominho, J.; Lourenço, A.; Marques, A. V.; Pereira, H. An Extensive Study on the Chemical Diversity of Lipophilic Extractives from Eucalyptus Globulus Wood. Phytochemistry 2020, 180, 112520.
https://doi.org/10.1016/j.phytochem.2020.112520.
(15) Mancia, M. D.; Reid, M. E.; DuBose, E. S.; Campbell, J. A.; Jackson, K. M. Qualitative Identification of Dibenzoylmethane in Licorice Root ( Glycyrrhiza Glabra ) Using Gas Chromatography-Triple Quadrupole Mass Spectrometry. Nat Prod Commun 2014, 9 (1), 1934578X1400900.
https://doi.org/10.1177/1934578X1400900127.
(17) Amalraj, A.; Pius, A.; Gopi, S.; Gopi, S. Biological Activities of Curcuminoids, Other Biomolecules from Turmeric and Their Derivatives – A Review. J Tradit Complement Med 2017, 7 (2), 205–233.
https://doi.org/10.1016/j.jtcme.2016.05.005.
(20) Chiyindiko, E.; Malan, F. P.; Langner, E. H. G.; Conradie, J. Conformational Study of [Cu(CF3COCHCO(C4H3X))2] (X = O or S), a Combined Experimental and DFT Study. J Mol Struct 2019, 1198, 126916.
https://doi.org/10.1016/j.molstruc.2019.126916.
(21) Chiyindiko, E.; Stuurman, N. F.; Langner, E. H. G.; Conradie, J. Electrochemical Behaviour of Bis(β-Diketonato)Copper(II) Complexes Containing γ-Substituted β-Diketones. Journal of Electroanalytical Chemistry 2020, 860, 113929.
https://doi.org/10.1016/j.jelechem.2020.113929.
(22) Xu, D. F.; Shen, Z. H.; Shi, Y.; He, Q.; Xia, Q. C. Synthesis, Characterization, Crystal Structure, and Biological Activity of the Copper Complex. Russian Journal of Coordination Chemistry 2010, 36 (6), 458–462.
https://doi.org/10.1134/S1070328410060060.
(24) Valdéz-Camacho, J. R.; Ramírez-Solís, A.; Escalante, J.; Ruiz-Azuara, L.; Hô, M. Theoretical Determination of Half-Wave Potentials for Phenanthroline-, Bipyridine-, Acetylacetonate-, and Glycinate-Containing Copper (II) Complexes. J Mol Model 2020, 26 (7), 191.
https://doi.org/10.1007/s00894-020-04453-x.
(25) Keller, M.; Ianchuk, M.; Ladeira, S.; Taillefer, M.; Caminade, A.-M.; Majoral, J.-P.; Ouali, A. Synthesis of Dendritic β-Diketones and Their Application in Copper-Catalyzed Diaryl Ether Formation. European J Org Chem 2012, 2012 (5), 1056–1062.
https://doi.org/10.1002/ejoc.201101521.
(26) Larson, A. T.; Crossman, A. S.; Krajewski, S. M.; Marshak, M. P. Copper(II) as a Platform for Probing the Steric Demand of Bulky β-Diketonates. Inorg Chem 2020, 59 (1), 423–432.
https://doi.org/10.1021/acs.inorgchem.9b02721.
(27) Spackman, P. R.; Turner, M. J.; McKinnon, J. J.; Wolff, S. K.; Grimwood, D. J.; Jayatilaka, D.; Spackman, M. A. CrystalExplorer : A Program for Hirshfeld Surface Analysis, Visualization and Quantitative Analysis of Molecular Crystals. J Appl Crystallogr 2021, 54 (3), 1006–1011.
https://doi.org/10.1107/S1600576721002910.
(28) McKinnon, J. J.; Jayatilaka, D.; Spackman, M. A. Towards Quantitative Analysis of Intermolecular Interactions with Hirshfeld Surfaces. Chemical Communications 2007, No. 37, 3814.
https://doi.org/10.1039/b704980c.