Exploring Uncommon Space Groups in Cadmium Azide Compounds: A Mini-Review with Examples in I41/acd, R3̅ , Pcca, and C2/m Crystal Systems

Document Type : Review Article


Department of Chemistry, Faculty of Science, University of Qom, Qom, Iran



The CCDC statistics reveal that the P21/c space group is the most common space group found in Cadmium Azide complexes. However, there are several rare space groups present in these compounds, which have not been explored in detail. This mini-review aims to shed light on these uncommon space groups in cadmium azide compounds, including I41/acd, R3̅, Pcca, and C2/m. Each space group is described in detail, and an example is presented for each to provide a better understanding of their unique properties. For instance, the I41/acd space group has a tetragonal crystal system with a unique four-fold symmetry axis, while the R3̅ space group belongs to the trigonal crystal system and has a three-fold axis of symmetry. Cd(N3)2 is used as an example for each space group to illustrate their characteristics. These findings offer valuable insights into exploring uncommon space groups in cadmium azide compounds, which could lead to the creation of new materials with unique properties. This research could have significant implications for the development of advanced materials in various fields, including electronics, optics, and catalysis.


Main Subjects

(1) Schock, M.; Bräse, S. Reactive & Efficient: Organic Azides as Cross-Linkers in Material Sciences. Molecules 2020, 25 (4), 1009. https://doi.org/10.3390/molecules25041009.
(2) Bräse, S.; Gil, C.; Knepper, K.; Zimmermann, V. Organic Azides: An Exploding Diversity of a Unique Class of Compounds. Angewandte Chemie International Edition 2005, 44 (33), 5188–5240. https://doi.org/10.1002/anie.200400657.
(3) Chen, F.-F.; Wang, F. Electronic Structure of the Azide Group in 3¢-Azido-3¢-Deoxythymidine (AZT) Compared to Small Azide Compounds. Molecules 2009, 14 (7), 2656–2668. https://doi.org/10.3390/molecules14072656.
(4) Jiang, C.; Cañada, L. M.; Nguyen, N. B.; Halamicek, M. D. S.; Nguyen, S. H.; Teets, T. S. Substituent-Dependent Azide Addition to Isocyanides Generates Strongly Luminescent Iridium Complexes. J Am Chem Soc 2023, 145 (2), 1227–1235. https://doi.org/10.1021/jacs.2c11062.
(5) Alharthi, A. I.; Ahmad, S.; Rüffer, T.; Lang, H.; Alotaibi, M. A.; Murtaza, G.; Isab, A. A. Synthesis and Crystal Structures of Cadmium(II) Complexes of 1,3-Diazinane-2-Thione (Diaz); [Cd(Diaz)4Cl2], [Cd(Diaz)2(NCS)2] and [Cd(Diaz)2(N3)2]. Inorganica Chim Acta 2018, 469, 312–317. https://doi.org/10.1016/j.ica.2017.09.028.
(6) Alharthi, A. I.; Ahmad, S.; Rüffer, T.; Lang, H.; Alotaibi, M. A.; Murtaza, G.; Isab, A. A. Synthesis and Crystal Structures of Cadmium(II) Complexes of 1,3-Diazinane-2-Thione (Diaz); [Cd(Diaz)4Cl2], [Cd(Diaz)2(NCS)2] and [Cd(Diaz)2(N3)2]. Inorganica Chim Acta 2018, 469, 312–317. https://doi.org/10.1016/j.ica.2017.09.028.
(7) Li, L.; Yan, Z.; Yang, L.; Han, J.-M.; Tong, W. Efficient Synthesis of Nanoscale Cadmium Azide from Intercalated Cadmium Hydroxide for Nanoexplosive Applications. ACS Appl Nano Mater 2023, 6 (4), 2835–2844. https://doi.org/10.1021/acsanm.2c05211.
(8) Musavi, S. A.; Montazerozohori, M.; Nasr-Esfahani, M.; Naghiha, R.; Zohour, M. M. Nano-Structure Zinc and Cadmium Azide and Thiocyanate Complexes: Synthesis, Characterization, Thermal, Antimicrobial and DNA Interaction; 2016; Vol. 48.
(9) The 230 Space Groups; 2016; pp 193–687. https://doi.org/10.1107/97809553602060000928.
(10) Nawrot, I.; Machura, B.; Kruszynski, R. Exploration of Cd( ii )/Pseudohalide/Di-2-Pyridyl Ketone Chemistry – Rational Synthesis, Structural Analysis and Photoluminescence. CrystEngComm 2016, 18 (15), 2650–2663. https://doi.org/10.1039/C6CE00112B.
(11) Dauter, Z.; Jaskolski, M. How to Read (and Understand) Volume A of International Tables for Crystallography : An Introduction for Nonspecialists. J Appl Crystallogr 2010, 43 (5), 1150–1171. https://doi.org/10.1107/S0021889810026956.
(12) Sauter, N. K.; Grosse-Kunstleve, R. W.; Adams, P. D. Robust Indexing for Automatic Data Collection. J Appl Crystallogr 2004, 37 (3), 399–409. https://doi.org/10.1107/S0021889804005874.
(13) Afkhami, F. A.; Mahmoudi, G.; Khandar, A. A.; Franconetti, A.; Zangrando, E.; Qureshi, N.; Lipkowski, J.; Gurbanov, A. V.; Frontera, A. Tetranuclear Mn II /Zn II and Novel Azido‐Bridged Chair‐Shaped Heptanuclear Cd II Compounds: The Effect of Metal Ion and Coordination Mode of the Azide Group on the Structure of the Products. Eur J Inorg Chem 2019, 2019 (2), 262–270. https://doi.org/10.1002/ejic.201801254.
(14) Zhou, Y.-L.; Zeng, M.-H.; Wei, L.-Q.; Li, B.-W.; Kurmoo, M. Traditional and Microwave-Assisted Solvothermal Synthesis and Surface Modification of Co 7 Brucite Disk Clusters and Their Magnetic Properties. Chemistry of Materials 2010, 22 (14), 4295–4303. https://doi.org/10.1021/cm1011229.
(15) Zhang, S.-H.; Zhao, R.-X.; Li, G.; Zhang, H.-Y.; Zhang, C.-L.; Muller, G. Structural Variation from Heterometallic Heptanuclear or Heptanuclear to Cubane Clusters Based on 2-Hydroxy-3-Ethoxy-Benzaldehyde: Effects of PH and Temperature. RSC Adv. 2014, 4 (97), 54837–54846. https://doi.org/10.1039/C4RA09687H.
(16) Du, M.; Zhang, Z.-H.; Wang, X.-G.; Tang, L.-F.; Zhao, X.-J. Structural Modulation of Polythreading and Interpenetrating Coordination Networks with an Elongated Dipyridyl Building Block and Various Anionic Co-Ligands. CrystEngComm 2008, 10 (12), 1855. https://doi.org/10.1039/b810121c.
(17) Cui, G.-H.; Li, J.-R.; Tian, J.-L.; Bu, X.-H.; Batten, S. R. Multidimensional Metal−Organic Frameworks Constructed from Flexible Bis(Imidazole) Ligands. Cryst Growth Des 2005, 5 (5), 1775–1780. https://doi.org/10.1021/cg050039l.