(2) Bräse, S.; Gil, C.; Knepper, K.; Zimmermann, V. Organic Azides: An Exploding Diversity of a Unique Class of Compounds.
Angewandte Chemie International Edition 2005,
44 (33), 5188–5240.
https://doi.org/10.1002/anie.200400657.
(3) Chen, F.-F.; Wang, F. Electronic Structure of the Azide Group in 3¢-Azido-3¢-Deoxythymidine (AZT) Compared to Small Azide Compounds.
Molecules 2009,
14 (7), 2656–2668.
https://doi.org/10.3390/molecules14072656.
(4) Jiang, C.; Cañada, L. M.; Nguyen, N. B.; Halamicek, M. D. S.; Nguyen, S. H.; Teets, T. S. Substituent-Dependent Azide Addition to Isocyanides Generates Strongly Luminescent Iridium Complexes.
J Am Chem Soc 2023,
145 (2), 1227–1235.
https://doi.org/10.1021/jacs.2c11062.
(5) Alharthi, A. I.; Ahmad, S.; Rüffer, T.; Lang, H.; Alotaibi, M. A.; Murtaza, G.; Isab, A. A. Synthesis and Crystal Structures of Cadmium(II) Complexes of 1,3-Diazinane-2-Thione (Diaz); [Cd(Diaz)4Cl2], [Cd(Diaz)2(NCS)2] and [Cd(Diaz)2(N3)2].
Inorganica Chim Acta 2018,
469, 312–317.
https://doi.org/10.1016/j.ica.2017.09.028.
(6) Alharthi, A. I.; Ahmad, S.; Rüffer, T.; Lang, H.; Alotaibi, M. A.; Murtaza, G.; Isab, A. A. Synthesis and Crystal Structures of Cadmium(II) Complexes of 1,3-Diazinane-2-Thione (Diaz); [Cd(Diaz)4Cl2], [Cd(Diaz)2(NCS)2] and [Cd(Diaz)2(N3)2].
Inorganica Chim Acta 2018,
469, 312–317.
https://doi.org/10.1016/j.ica.2017.09.028.
(7) Li, L.; Yan, Z.; Yang, L.; Han, J.-M.; Tong, W. Efficient Synthesis of Nanoscale Cadmium Azide from Intercalated Cadmium Hydroxide for Nanoexplosive Applications.
ACS Appl Nano Mater 2023,
6 (4), 2835–2844.
https://doi.org/10.1021/acsanm.2c05211.
(8) Musavi, S. A.; Montazerozohori, M.; Nasr-Esfahani, M.; Naghiha, R.; Zohour, M. M. Nano-Structure Zinc and Cadmium Azide and Thiocyanate Complexes: Synthesis, Characterization, Thermal, Antimicrobial and DNA Interaction; 2016; Vol. 48.
(10) Nawrot, I.; Machura, B.; Kruszynski, R. Exploration of Cd( ii )/Pseudohalide/Di-2-Pyridyl Ketone Chemistry – Rational Synthesis, Structural Analysis and Photoluminescence.
CrystEngComm 2016,
18 (15), 2650–2663.
https://doi.org/10.1039/C6CE00112B.
(11) Dauter, Z.; Jaskolski, M. How to Read (and Understand) Volume A of
International Tables for Crystallography : An Introduction for Nonspecialists.
J Appl Crystallogr 2010,
43 (5), 1150–1171.
https://doi.org/10.1107/S0021889810026956.
(13) Afkhami, F. A.; Mahmoudi, G.; Khandar, A. A.; Franconetti, A.; Zangrando, E.; Qureshi, N.; Lipkowski, J.; Gurbanov, A. V.; Frontera, A. Tetranuclear Mn
II /Zn
II and Novel Azido‐Bridged Chair‐Shaped Heptanuclear Cd
II Compounds: The Effect of Metal Ion and Coordination Mode of the Azide Group on the Structure of the Products.
Eur J Inorg Chem 2019,
2019 (2), 262–270.
https://doi.org/10.1002/ejic.201801254.
(14) Zhou, Y.-L.; Zeng, M.-H.; Wei, L.-Q.; Li, B.-W.; Kurmoo, M. Traditional and Microwave-Assisted Solvothermal Synthesis and Surface Modification of Co
7 Brucite Disk Clusters and Their Magnetic Properties.
Chemistry of Materials 2010,
22 (14), 4295–4303.
https://doi.org/10.1021/cm1011229.
(15) Zhang, S.-H.; Zhao, R.-X.; Li, G.; Zhang, H.-Y.; Zhang, C.-L.; Muller, G. Structural Variation from Heterometallic Heptanuclear or Heptanuclear to Cubane Clusters Based on 2-Hydroxy-3-Ethoxy-Benzaldehyde: Effects of PH and Temperature.
RSC Adv. 2014,
4 (97), 54837–54846.
https://doi.org/10.1039/C4RA09687H.
(16) Du, M.; Zhang, Z.-H.; Wang, X.-G.; Tang, L.-F.; Zhao, X.-J. Structural Modulation of Polythreading and Interpenetrating Coordination Networks with an Elongated Dipyridyl Building Block and Various Anionic Co-Ligands.
CrystEngComm 2008,
10 (12), 1855.
https://doi.org/10.1039/b810121c.
(17) Cui, G.-H.; Li, J.-R.; Tian, J.-L.; Bu, X.-H.; Batten, S. R. Multidimensional Metal−Organic Frameworks Constructed from Flexible Bis(Imidazole) Ligands.
Cryst Growth Des 2005,
5 (5), 1775–1780.
https://doi.org/10.1021/cg050039l.